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1. INTRODUCTION

Limit cycles are periodic solutions of autonomous non-linear dynamical systems.
Limit cycles have been observed in many biological, chemical, electrical, and
mechanical systems [1]. We consider a 1-parameter autonomous non-linear
dynamical system

xR "f (x, k), (1)

where x is the state vector, and k is a scalar parameter. Limit cycles in systems of the
form of equation (1) commonly arise at a Hopf bifurcation of an equilibrium
solution with varying values of the parameter k [1]. Stable limit cycles are created
at a supercritical Hopf bifurcation, and unstable limit cycles at a subcritical Hopf
bifurcation. In either case, the amplitude of the limit cycles builds up gradually as
the parameter changes from its value at the Hopf bifurcation point.

Limit cycles that show an abrupt increase in amplitude with varying values of the
parameter k have been referred to as large-amplitude limit cycles [2]. Two possible
ways in which stable large-amplitudes limit cycles may be created are shown in
Figure 1, where the limit cycles are represented by the maximum amplitude of
oscillation. Both cases in Figure 1 involve a primary Hopf bifurcation, and one or
more secondary fold bifurcations. For a description of the dynamics associated
with the bifurcations in Figure 1, and the need for prediction and prevention of
large-amplitudes limit cycles, the reader is referred to the detailed introduction in
reference [2].

Reference [2] provided the motivation for constructing low order models to
characterize the primary Hopf-secondary fold bifurcation pairs in Figure 1.
Non-linear damping was considered to be the mechanism responsible for creation
of large-amplitude limit cycles. Following a constructive approach, augmented van
der Pol oscillators with additional higher order damping terms were studied, which
successfully reproduced the dynamics of Figure 1. These models were found to
adequately represent large-amplitude limit cycles called surge in axial-#ow
compressors. On the other hand, large-amplitude limit cycles in aircraft #ight
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Figure 1. Two possible ways in which large-amplitude limit cycles may be created. (full
lines*stable equilibria, dashed lines*unstable equilibria, "lled circles*stable limit cycles, empty
circles*unstable limit cycles, "lled square*Hopf bifurcation, empty square*fold bifurcation).

dynamics called wing rock could not be explained on the basis of the non-linear
damping mechanism. The present paper considers an alternate mechanism for
creation of large-amplitude limit cycles in a pair of resonantly coupled oscillators.

2. RESONANTLY COUPLED OSCILLATORS

In keeping with the constructive approach outlined in reference [2], we use the
supercritical van der Pol oscillator as the starting point for this study.

xK#x#(x2!k)xR "0. (2)

With varying values of the parameter k, the equilibrium at x"0 loses stability at
a Hopf bifurcation at k"0, giving rise to a family of stable limit cycles for k'0.
One way of augmenting equation (2) to create large-amplitude limit cycles,
discussed in reference [2], was to introduce damping terms of the fourth and sixth
order which respectively reproduced the bifurcations of the "rst and second types in
Figure 1. Instead, in this paper we augment equation (2) with a parametric
excitation !uxR , where u is the response of a second order harmonic oscillator,
which is in turn excited by a term exxR . The augmented system of coupled oscillators
appears as follows:

xK#x#(x2!k)xR !uxR "0, uK#u2u#duR #exxR "0. (3)

The parametric excitation term !uxR can also be looked upon as another way of
changing the coe$cient of the damping term without explicitly adding higher order
non-linear damping.

The coupled system of equations (3) shows an equilibrium at x"0 (and u"0),
with a loss of stability at a Hopf bifurcation at k"0 as in the case of the van der
Pol equation (2). Suppose the x-oscillator shows limit cycles of frequency u

0
. Then,
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Figure 2. Limit cycle solutions of equation (3) for (a) e"0)5, (b) e"1)0, (c) e"1)5. (full
lines*stable limit cycles, dashed lines*unstable limit cycles).

the u-oscillator is excited at a frequency 2u
0
by the forcing term exxR . To ensure that

the u-oscillator is resonantly excited by this forcing, the frequency of the u-oscillator
is chosen such that it satis"es a near-resonance condition

u+2u
0
. (4)

For a "xed value of u, the amplitude of the response in u depends on the coe$cient
of the forcing term e, and on the damping coe$cient d. The oscillation in u then acts
as a parametric excitation to the x-oscillator with frequency 2u

0
. A parametric

forcing of this nature is sometimes called principal parametric resonance.
With "xed values of d"0)5 and u"2)0, a continuation algorithm [3] is used to

trace out the family of limit cycles emerging at the Hopf bifurcation point at k"0
for di!erent values of e. Results of the computation are plotted in Figure 2, which
shows that for small values of e, stable limit cycles emerge at a supercritical Hopf
bifurcation. However, for su$ciently large values of e, the Hopf bifurcation is
subcritical with unstable limit cycles that undergo a fold bifurcation leading to
stable large-amplitude limit cycles. It is observed that e, which controls the
amplitude of u, needs to be large enough so that u is of the same order as x to ensure
that large-amplitude limit cycles are formed. Thus, the system of resonantly
coupled oscillators given by equation (3) with the resonance condition equation (4)
is an adequate model for the large-amplitude limit cycles of the "rst type in Figure
1. However, this system is found to be unable to produce the large-amplitude limit
cycles of the second type in Figure 1.

A closer inspection of equation (3) reveals that the u-oscillator is resonantly
excited by the forcing term exxR , whereas the x-oscillator does not have a sti!ness
term that can resonantly interact with the parametric forcing !uxR . Since the term
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Figure 3. Limit cycle solutions of equation (5) for (a) e"0)5, (b) e"1)0, (c) e"1)5. (full
lines*stable limit cycles, dashed lines*unstable limit cycles).

!uxR oscillates at a frequency of 3u
0
, we augment the x-oscillator with an

additional cubic sti!ness term cx3. The modi"ed system of coupled oscillators now
appears as follows:

xK#x#cx3#(x2!k)xR !uxR "0, uK#u2u#duR #exxR "0. (5)

The x-oscillator in equation (5) can be looked upon as a hybrid van der Pol-Du$ng
oscillator with principal parametric resonance.

Keeping d"0)5 and c"1)0 "xed, and choosing u"3)5 to satisfy the resonance
condition of equation (4), the families of limit cycles emerging at the Hopf
bifurcation at k"0 for di!erent values of e are plotted in Figure 3. Stable limit
cycles are seen to emerge at the supercritical Hopf bifurcation, and for su$ciently
large values of e, the family of limit cycles undergoes a pair of fold bifurcations to
yield large-amplitude limit cycles of the second type in Figure 1. This phenomenon
requires that u be of the same order of magnitude as x, which is satis"ed for large
enough values of e. Thus, with the inclusion of the cubic sti!ness term, the system of
resonantly coupled oscillators in equation (5) provides an alternate mechanism for
large-amplitude limit cycles.

3. AVOIDING LARGE-AMPLITUDE LIMIT CYCLES

The development of the models in the last section naturally suggests two ways to
avoid large-amplitude limit cycles. The "rst strategy is to detune the u-oscillator
frequency from the resonance condition equation (4). Limit cycle families for
di!erent values of u are plotted in Figure 4 for "xed values of e"1)0, d"0)5, and
c"1)0, to study the e!ect of detuning u. It is seen that as u is detuned below the
resonance value, the fold bifurcations disappear, and the large-amplitude limit
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Figure 4. Limit cycle solutions of equation (5) for (a) u"2)0, (b) u"2)5, (c) u"3)5, (d) u"3)7.
(full lines*stable limit cycles, dashed lines*unstable limit cycles).

Figure 5. Limit cycle solutions of equation (5) for (a) d"0)4, (b) d"0)5, (c) d"0)7, (d) d"1)0. (full
lines*stable limit cycles, dashed lines*unstable limit cycles).

cycles vanish. The other technique to avoid large-amplitude limit cycles is to
increase the damping of the u-oscillator. It is observed that for large values of d, the
amplitude of u is an order lower than that of x. Figure 5 shows that with increasing
values of d, with e"1)0, u"3)5, and c"1)0 maintained constant, the fold
bifurcations disappear, and large-amplitude limit cycles are avoided. Thus, in
a practical system, large-amplitude limit cycles can be avoided by suitably altering
the natural frequency or damping of the u-oscillator.
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4. CONCLUSIONS

Large-amplitude limit cycles have been demonstrated in a pair of resonantly
coupled oscillators. Strategies to avoid large-amplitude limit cycles in practical
systems have been outlined on the basis of the models developed.
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